
Human Respiratory System

The human respiratory system moves respiratory gases between the external environment and the internal surfaces of the lungs where <u>gas exchange occurs between the **ALVEOLI** and the **RBC** in the blood.</u>

Movement of Oxygen and Carbon Dioxide In and Out of the Respiratory System

PARTS OF THE RESPIRATORY SYSTEM <u>NASAL CAVITY</u> (NOSE)

• Air enters the nasal cavity which is lined with moist ciliated mucus membranes which warms, moistens, and filters the air

<u>PHARYNX</u>

- Air then travels past the pharynx, the place were the oral and nasal cavities meet
- As you know, air can also enter through the oral cavity (mouth) as well

<u>EPIGLOTŤIS</u>

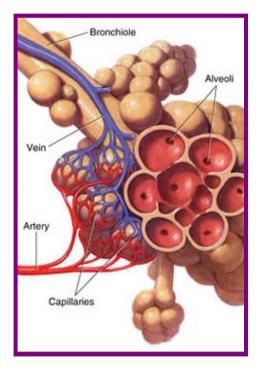
- A flap of tissue at the opening of the WINDPIPE.
- When swallowing food or drink, the epiglottis covers the WINDPIPE to prevent choking

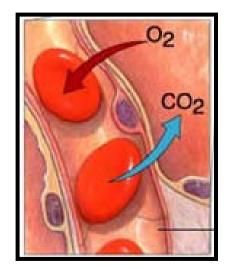
TRACHEA (WINDPIPE)

- The air passes from the pharynx to the **TRACHEA**, which leads to the lungs
- The walls of the trachea contain rings of *CARTILAGE*, which keep the trachea open yet flexible.
- As the air passes into the trachea, it passes the *LARYNX* or *VOICE BOX*
- The trachea is lined with CILIA, which filters out particles and sweeps them upward toward the pharynx

<u>BRONĈHI</u>

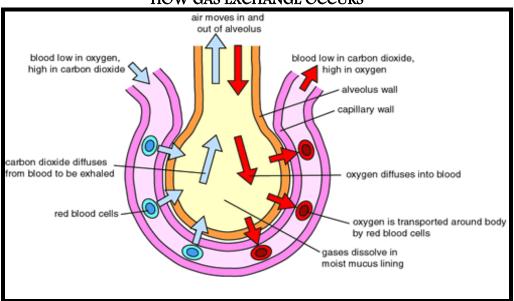
- The lower end of the trachea branches into 2 tubes called the **BRONCHI** (singular ~ **BRONCHUS**) which lead directly into the lungs
- The bronchi are also kept open by rings of cartilage and lines with mucus membranes (no cilia)


<u>BRONCHIOLES</u>


- The bronchi extend into the lungs, branching into smaller and smaller tubes called *BRONCHIOLES*
- The bronchioles are lined with mucus membranes but lack cartilage rings
- At the end of each bronchiole there is a cluster of tiny, hollow air sacs called *ALVEOLI*

<u>ALVEOLI</u>

- The lungs contain millions of **ALVEOLI**, which are the sites for gas exchange
- The walls of the alveoli are thin and moist and are surrounded by capillaries
- Oxygen diffuses out of the alveoli and into the surrounding capillaries; carbon dioxide and water vapor diffuse out of the blood and into the alveoli, to be released to the outside


THE ALVEOLI & CAPILLARIES GAS EXHANGE between RBC & ALVEOLI

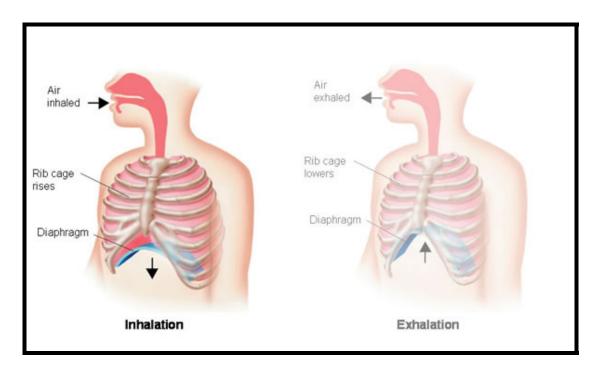
HOW DOES GAS EXCHANGE OCCUR

- Oxygen from the alveoli diffuses into the blood and combines with the hemoglobin on the RBC to form a compound called OXYHEMOGLOBIN
- At the body cells, the oxygen and hemoglobin separate and the oxygen diffuses into the cells. to be used by the mitochondria for aerobic respiration.
- Carbon dioxide and water (waste products of aerobic respiration) diffuse from the body cells into ٠ the blood and carried to
- A majority of the carbon dioxide combines with the water in the blood and is carried in the form of ٠ BICARBONATE IONS (HCO3). When the blood gets to the lungs, the bicarbonate ions breaks down into carbon dioxide and water, which diffuses into the alveoli and released to the outside.

HOW GAS EXCHANGE OCCURS

HOW DO WE BREATHE?

- **BREATHING**: movement of air in/out of the lungs
- Lungs are *ELASTIC* like balloons, but contain NO muscle.
- The lungs expand and contract in response to pressure changes in the chest cavity which is brought about by the rib cage and the diaphragm


INHALATION •

~-the ribs push upward and outward and the diaphragm moves downward, ENLARGING the chest cavity, REDUCING the pressure around the lungs. ~-the lungs expand and air rushes in

EXHALATION ٠

--the ribs move in and down and the diaphragm moves up making the chest cavity smaller, **INCREASING** pressure on the lungs

-- the pressure pushes against the lungs, forcing the air up and out of the body.

<u>BREATHING RATE</u>

- The breathing rate is controlled by the **MEDULLA OBLONGATA** of the brain
- The medulla monitors the levels of **CARBON DIOXIDE** in the blood
- When CO₂ is high, messages are sent to the rib cage muscles and the diaphragm to INCREASE the breathing rate
- When the CO₂ blood levels decrease, the breathing rate slows down.
- Regulation of breathing rate is an example of a *FEEDBACK MECHANISM* that helps the body maintain homeostasis

DISORDERS OF THE RESPIRATORY SYSTEM

<u>BRONCHITIS</u>

--inflammation of the linings of the bronchial tubes, usually due to a bacterial infection --due to the swelling, the air passages become narrowed and filled with mucus causing coughing & breathing difficulties

~~usually treated with antibiotics

♦ <u>ASTHMA</u>

--an allergic reaction characterized by a narrowing of the bronchial tubes, resulting in difficulty breathing.

~-asthma medications and inhalers are often used to open up the airways

• <u>EMPHYSEMA</u>

--disease often caused by cigarette smoking

--walls of the alveoli break down and lose their elasticity, making it more difficult for gas exchange to occur

~-symptoms include difficulty in breathing, decreased lung capacity, and a shortness of breath