Mendelian Genetics

1

Gregor Mendel

(20 de julio de 1822 - 6 de enero de 1884)

Gregor Mendel (1822 - 1884)Discovered the laws governing the inheritance of traits without any knowledge of DNA or chromosomes using pea plants.

Mendel's Work He conducted most of his work between 1856 and 1863. He established many rules of heredity now known as Mendelian inheritance.

Particulate Inheritance

Mendel stated that physical traits are inherited as "particles"

Mendel did not know that the "particles" were actually chromosomes & DNA

Genetic Terminology

- Trait any characteristic that can be passed from parent to their offspring.
- Heredity passing of traits from parent to offspring.
- Genetics study of heredity.

Types of Genetic Crosses

- Monohybrid cross cross involving a single trait ex. flower color
- Dihybrid cross cross involving two traits
 - ex. flower color & plant height

Designer "Genes"

- Alleles Two forms of a gene (dominant & recessive)
- Dominant stronger of two genes expressed in the hybrid; represented by a capital letter (R)
- Recessive gene that shows up less often in a cross; represented by a lowercase letter (r)

7

More Terms

- Genotype gene combination for a trait (ex RR, Rr, rr)
- Phenotype the physical feature resulting from a genotype (ex. red, white)

Genotypes

- Homozygous genotype When the two alleles are same (2 dominant or 2 recessive alleles).
 ex. TT or tt; also called pure.
- Heterozygous genotype When the 2 alleles are different- one dominant allele & one recessive allele.
- ex. Tt; also called hybrid

Genotype Examples

When choosing genotype letters, they must be the same. In most cases the dominant gene, if it's color, will get the letter of that color. If purple is dominant, we use a P and the lowercase p for the recessive color, even if the recessive color starts with a different letter like white.

P=Purple

p=White

Phenotype Examples

This is the physical trait that can be seen. In this case the flower will either be purple or white.

<u>Genotype</u>	<u>Phenotype</u>
PP	Purple
Рр	Purple
рр	White

**Remember, if just one dominant allele is there, that trait will show up in the offspring.

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

12

Mendel's Pea Plant Experiments

Reproduction in Flowering Plants

Pollen contains sperm and is produced by the stamen.

The ovary contains eggs and is found inside the flower

Self vs. Cross Pollination

Pollen carries sperm to the eggs for fertilization.

> *Self-fertilization* can occur in the same flower

Crossfertilization occurs between two flowers

He chose the garden pea *Pisum sativum*

Can be grown in a small area easily Produce lots of offspring Produce pure plants when allowed to self-pollinate Several generations Can be artificially crosspollinated Bisexual.

Many traits known.

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

How Mendel Began?

Mendel produced pure strains by allowing the plants to selfpollinate for several generations

Eight Pea Plant Traits

rasseed shape --- Round (R) or Wrinkled (r) rased Color ---- Yellow (Y) or Green (y) Reape --- Smooth (S) or wrinkled (s) Reapod Color --- Green (G) or Yellow (g) rasseed Coat Color ---Gray (G) or White (g) Reaflower position --- Axial (A) or Terminal (a) caPlant Height --- Tall (T) or Short (t) RaFlower color --- Purple (P) or white (p)

Table 11.1 Pea-	Pea-Plant Characters Studied by Mendel				
Character studied	Dominant trait	Recessive trait			
Seed shape	smooth	wrinkled			
1. K. B. K. S.	\odot				
Seed color	yellow	green			
	O	O			
Pod shape	inflated	wrinkled			
	- Co	40000			
Pod color	green	yellow			

How He Used a Punnett Square

How to Make a Punnett Square

Punnett squares allow geneticists to predict the possible genotypes and phenotypes of offspring.

In this example, both parents are heterozygous for yellow-pea allele (*Yy*).

Make the grid
 Place the alleles of the gametes of one parent along the top of a grid and those of the other parent along the left-hand side.

Parent 2

2 Fill in the grid Combine the parent alleles inside the boxes. The letters show the genotypes of the offspring.

The genotype ratio is 1:2:1, meaning 1 YY, 2 Yy, 1 yy.

Fill in the offspring Use the Law of Dominance to determine the phenotypes and phenotype ratio of the offspring.

The phenotype ratio is 3:1, meaning 3 yellow peas to 1 green pea.

Steps To His 3:1 Ratio

Step 1-Starts with two pure pea plants. One is pure dominant tall (TT) and the other is pure recessive short (tt). This cross is called the P generation. The offspring are called the F_1 generation. P Generation P Generation

**All of the offspring will be hybrids (Tt) showing the dominant trait.

F_2 Generation

Step 2-Take two of the offspring from the F_1 generation and cross them. This will yield offspring in a 3:1 phenotypic ratio. Three plants will possess a dominant allele so they will show the dominant trait. One will have two copies of the recessive alleles and show the recessive trait.

F_2 Generation-Crossing offspring from the F_1 generation

Here is his 3:1 ration- 3 show the dominant trait and one shows the recessive trait.

Did the observed ratio match the theoretical ratio?

The theoretical or expected ratio of plants producing round or wrinkled seeds is 3 round : 1 wrinkled

Mendel's observed ratio was 2.96:1

The discrepancy is due to statistical error. The larger the sample the more nearly the results approximate to the theoretical ratio.

Mendel's Experimental Results

Table 11.2 Ratios of Dominant to Recessive in Mendel's Plants

Dominant trait	Recessive trait	Ratio of dominant to recessive in F ₂ generation
Smooth seed	Wrinkled seed	2.96:1 (5,474 smooth, 1,850 wrinkled)
Yellow seed	Green seed	3.01:1 (6,022 yellow, 2,001 green)
Inflated pod	Wrinkled pod	2.95:1 (882 inflated, 299 wrinkled)
Green pod	Yellow pod	2.82:1 (428 green, 152 yellow)
Purple flower	White flower	3.14:1 (705 purple, 224 white)
Flower on stem	Flower at tip	3.14:1 (651 along stem, 207 at tip)
Tall stem	Dwarf stem	2.84:1 (787 tall plants, 277 dwarfs)
	Average ratio, all traits:	3:1

What Do the Peas Look Like?

Following the Generations

Cross 2 Results Cross 2 Hybrids Pure in all get Plants Hybrids 3 Dominant & 1 TT x tt Tt Recessive TT, (2)Tt, tt

Practice

Cross a single trait (Monohybrid) using phenotypic and genotypic ratios.

Trait Allele	P ₁ / : Seed s: R -	Nonohyb Shape Round r	rid Cra - Wrinl)SS kled
Cross	: Roun F	d seeds R	× W ×	/rinkled seeds rr
I	r	r	Geno	otype: Rr
R	Rr	Rr	Pher Geno Rati	notype: Round otypic o: All Rr
R	Rr	Rr	Pher Rati	notypic o: All round

P1 Monohybrid Cross Review

- Homozygous dominant x Homozygous recessive
- Offspring all Heterozygous (hybrids)
- Offspring called F₁ generation
- Genotypic & Phenotypic ratio is ALL ALIKE

F₁ Monohybrid Cross Trait: Seed Shape Alleles: R - Round r - Wrinkled Cross: Round seeds x Round seeds Rr Rr Genotype: RR, Rr, rr R r Phenotype: round & wrinkled RR Rr R Genotypic Ratio: 1 RR : 2 Rr : 1 rrRr r rr Phenotypic Ratio: 3 round:1 wrinkled

F₁ Monohybrid Cross Review

- Heterozygous x Heterozygous
- Offspring:
 25% Homozygous dominant RR
 50% Heterozygous Rr
 25% Homozygous Recessive rr
- Offspring called F_2 generation
- Genotypic ratio is 1:2:1
- Phenotypic Ratio is 3:1
...And Now the Test Cross

The only way Mendel could tell if one of his F₂ plants was pure, was to cross it with a pure recessive. This is known as an test cross

Here is what he did:

Homozygous Recessive x Hybrid

Why Do A Test Cross?

If you look at a sample you can SEE the dominant phenotype but you do not KNOW if the sample is PURE DOMINANT or HYBRID.

A test cross will let you know very quickly.

F₂ Monohybrid Cross (1st) Trait: Seed Shape Alleles: R - Round r - Wrinkled Cross: Wrinkled seeds x Round seeds (you think) RR rr X Genotypes: Rr r r Phenotype: Round Rr Rr R Genotypic Ratio: ALL Rr Rr Rr R Phenotypic Ratio: ALL Round

You Have A Pure

 If this is your outcome, you know the plant that shows the dominant trait is actually pure dominant.

F	e ₂ Monoh	ybrid (Cro	ss (2nd)****
Trait:	Seed Sh	ape		
Alleles	: R - Rou	nd I	r – 1	Wrinkled
Cross:	Wrinkle	d seeds	X	Round seeds
	R	r	×	rr Genotypes: Rr, rr
_	R	r		Phenotypes: round &
1	- Rr	rr		Wrinkled Genotypic Ratio: 2 Pn : 2 m
1	r Rr	rr		Phenotypic Ratio:
				c round : c wrinkied

You Have an Imposter

- If half of your offspring show the recessive trait, you did NOT have a pure sample but a HYBRID.
- This is the ultimate TEST CROSS

In pea plants, the trait for tall stems is dominant over the trait for short stems. If two heterozygous tall plants are crossed, what percentage of the offspring would be expected to have the same *phenotype* as the parents?

1)	25%	3)	75%
2)	50%	4)	100%

In summer squash, white-colored fruit is dominant over yellow-colored fruit. If homozygous yellow-fruited plants are crossed with heterozygous white-fruited plants, what is the expected percentage of fruit color produced in the offspring?

100 % yellow

50% yellow, 50% white

100% white

4) 25% yellow, 75% white

In certain rats, black fur is dominant over white fur. If two rats, both heterozygous for fur color, are mated, their offspring would be expected to have

- 1) four different genotypes and two different colors
- 2) two different genotypes and three different colors
- three different genotypes and two different colors
- 4) three different genotypes and three different colors

In humans, the ability to roll the tongue is dominant over the inability to roll the tongue. If two parents who are homozygous dominant for this trait have 8 children, how many children would be expected to be *unable* to roll their tongues?

1)	0	3)	8
2)	2	4)	4

In canaries, the gene for singing (S) is dominant over the gene for non-singing (s). When hybrid singing canaries are mated with non-singing canaries, what percentage of the offspring is likely to possess the singing trait?

1)	0%	3)	50%
2)	25%	4)	100%

Crossing More Than One Trait

- When crossing more than one trait, you first need to determine the number of possible outcomes so you can create a Punnett Square.
- In this class we will only use two traits, but I want to show you how it can be done with multiple traits.

Determine The Number of Traits

- If you are using more than one trait, you must first determine how many possible outcomes there will be.
- There is a formula:

 2^{n} can be used, where "n" = the number of heterozygous traits.

Practice (Be Careful)

- Alleles n= Possible Outcomes
- MMTtFFssWwDd
- nnHHRrYyEeQq
- RrYyCcHHPpAa
- TTYYnnRReeWW

Let's Practice

• TTBb

• **ttBb**

• Ttbb

T+BB

TTBB

ttBB

TtBb

Let's Practice How many gametes will form crossing TTBb x Ttbb 2n

n= _____ so what are the possible outcomes? This happens to work well, but it will get harder

X

T=Tall t=Short B=Brown b=Tan

Stretch it to 16 Boxes

 Unfortunately if you want the numbers to be correct, you need to make it fit into a 16 square Punnett Square. In this case, just double everything.

1		

Let's Practice

Let's try the cross:
ttBb x TTbb

Remember to fill all four boxes on each side of the Punnett Square

X

	-

What is a Dihybrid Cross? This time the two traits will both be hybrids (heterozygous).

Two heterozygous traits will always yield 4 outcomes.

Dihybrid Example

TtBb x TtBb

T=Tall	t=Short
B=Brown	b=tan

Good news, when determining the possible outcomes of a dihybrid cross, you only have to do it once, since both sides of the equation are the same.

4 Outcomes

TtBb x TtBb

If you look you have 2 heterozygous traits (remember, only look at one side). So, n = 2 so if you plug in the numbers:

 2^n where n = 2

There will be 4 possible outcomes.

Remember you must have one of each letter.

Filling In The Punnett Square

 Each of the outcomes you came up with will go above or next to one box on the large Punnett square. What ever is on the top will be repeated along the side. Once I determine the phenotypes, I assign each a symbol so it is easy to count the ratio.

Since both parents were the same, the top and the side will be the same.

Phenotypes

Phenotypic Dihybrid Results

- 9 Red, Tall Plants
- 3 White, Tall Plants
- 3 Red, Short Plants
- 1 White, Short Plants
 - Or: 9:3:3:1

All possible gamete combinations

Dihybrid Cross Practice-SAVE FOR LATER IN THE NOTES

Dihybrid Cross (Answered)

	RY	Ry	rY	ry		
RY	RRYY	RRYy	RrYY	RrYy	Round/Yellow:	9
Ry	RRYy	RRyy	RrУy	Rryy	Round/green:	3
rY	RrYY	RrYy	rrУУ	rrУy	wrinkled/Yellow:	3
ry	RrYy	Rryy	rrУy	rryy	wrinkled/green: 9:3:3:1 phenotyp ratio	1 oic

Dihybrid Cross (Pictures)

	RY	Ry	rY	ry
RY	RRYY	RRYy	0 BrYY	RrYy
Ry	RRYy	RRyy	() RrYy	Rryy
rY	RrYY	RrYy	with the second	- rrYy
ry	RrYy	Rryy	тту	e myy

Round/Yellow: 9 Round/green: 3 wrinkled/Yellow: 3 wrinkled/green: 1 9:3:3:1

Mendel's Laws

Law of Dominance
Law of Segregation
Law of Independent Assortment

Law of Dominance

The principle stating that one factor in a pair of traits dominates the other. If one dominant allele and one recessive allele are in a pair, the dominant trait shows up in the phenotype. The only way for a recessive phenotype to show up is if both alleles are recessive.

Law of Dominance

All the offspring will be heterozygous and express only the dominant trait.

RR x rr yields all Rr (round seeds)

	Characteristic	Dominant	Recessive
Drosophila	Body Color Eye color	Gray Red	Black White
Humans	Color of hair Form of hair Color of eye Lips Blood group	Dark Curly Brown Broad and thicken A,B,AB	Light Straight Blue Thin O

Law of Segregation

The principle stating that during the production of gametes only one allele from each parent. Two different alleles are rejoined during fertilization.

Law of Segregation

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Applying the Law of Segregation

Law of Independent Assortment

If two different traits are on two different chromosomes, they can be inherited independent of each other.

Common Example

Mom has blonde hair and blue eyes while dad has brown hair and brown eyes.

The kids could have:

Brown hair and blue eyes Blonde hair and brown eyes Brown hair and brown eyes Blonde hair and blue eyes

Summary of Mendel's laws

LAW	PARENT CROSS	OFFSPRING
DOMINANCE	TT x tt tall x short	100% Tt tall
SEGREGATION	Tt x Tt tall x tall	75% tall 25% short
INDEPENDENT ASSORTMENT	RrGg x RrGg round & green x round & green	9/16 round seeds & green pods 3/16 round seeds & yellow pods 3/16 wrinkled seeds & green pods 1/16 wrinkled seeds & yellow pods

Variations on Mendel's Laws

- 1. Incomplete Dominance
- 2. Codominance

Incomplete Dominance and Codominance

Incomplete Dominance

F1 hybrids have an appearance somewhat in between the phenotypes of the two parental varieties.

red (RR) x white (rr)

RR = red flower rr = white flower

Rr = pink flower

Incomplete Dominance

Incomplete Dominance

© 1998 Sinauer Associates, Inc.

Carnations

Codominance

Both the alleles can be expressed in the same organism or flower.

Roan Cows

A pure white cow (WW) is mated with a pure red cow (RR). The offspring will be a mixture with both color hair being expressed in one individual (RW). In this case we use two different letters because each is dominant.

Pictures of Roan Animals

Dominance Relationships

Codominance in Human Blood

Two alleles are expressed in heterozygous individuals. Example: blood type-It is controlled by three alleles: A, B, and O

2. Type
$$B = I^B I^B$$
 or I^B

In humans, there are four blood types: A,B,AB and O

O is recessive (i), two O alleles must be present for the person to have type O blood (ii)

A (I^A) and B (I^B) are Codominant. If a person receives an A allele and B allele, their blood type is AB type.

Crosses involving blood type often use an ${\cal I}$ to denote the alleles

Blood Practice Questions

•Can parents (mom has type A blood and dad has type O blood) have a child with type O blood if type O blood is recessive?

•Can parents (mom has type AB blood and dad has type O blood) have a child with type O blood

•Can parents (mom has type AB blood and dad has type A blood) have a child with type B blood?

 _	

•Can parents (mom has type AB blood and dad has PURE type A blood) have a child with type B blood?

