Protein Synthesis

DNA Replication Review

- DNA is a double stranded molecule that does not leave the nucleus. DNA replication occurs exclusively in the nucleus.
- With several enzymes, 1 double stranded DNA molecule will turn into 2 double stranded molecules that are identical to each other.
- A bonds with T and C bonds with G.

Sequences of bases in the DNA called	can code for the production of proteins.					
The process starts in the and is comp	leted at a ribosome in the					
Proteins may be further modified in the	to be incorporated in the					
0r	from the cell.					
Proteins are composed of long chains of	called					
Proteins can be	, hormones,					
, structural and						
Some protein functions include:						
•						
•						
What must occur before the protein can function p	roperly?					
Where are the instructions to initially build a prote	ein?					
What is the role of the enzyme RNA Polymerase II?	,					

This process is known as ______.

How is the base pairing of transcription different from DNA replication?

A binds with _____ instead of _____.

DNA MRNA Transcription Mature mRNA Transport to cytoplasm for protein synthesis (translation) Cell membrane

DNA Replication

Transcription

Briefly describe mRNA:

______ strand with a phosphate group, a ______ sugar and the

bases _____, ____, ____ and _____.

Where will the mRNA go once it leaves the nucleus?

Each three base se	equence is call	ed a		and will code for a specific							
		Codons are on	ly found o	n mRNA	A. Each	codon	compos	ed of			
nucleotides w	ill code for	amino acid.									
	U	se the Univers	al Geneti	c Code							
Codon				U	Secon C	d base A	G				
Codoli	UCA			UUU UUC UUA				U			
Amino Acid			U		UCA Ser	UAA Stop	UGA Stop	A			
Codon	CUC			ບບຜຼ ເບບ	UCG]	CAU His	UGG Trp	G U			
Amino Acid			(5' end)	CUC CUA CUG	CCC CCA CCG		CGC CGA CGG	(pue) (D			
Codon	AUG		st base	AUU AUC Ile		AAU AAC	AGU AGC	C C ird base			
Amino Acid			Ē	AUA _ AUG Met or start		AAA AAG	AGA AGG	AF			
Codon	U G A		G	GUU GUC GUA	GCU GCC GCA	GAU GAC GAA	GGU GGC GGA	U C A			
Amino Acid				GUG	GCG	GAG	GGG	G			
Building a polyper	otide chain mu	ıst begin with a	Copyright	© Pearson Educatio	n, Inc., publishing as	Benjamin Cumming	h a				
cod	lon.										
START codon =											
STOP codons =	,	and									
T A C	ΤΤG	ССС	G G C	L A	A T T	I					
<u>A U G</u>	<u>A A C</u>	<u>G G G</u>	<u>C C G</u>	<u> </u>	JAA	<u>.</u>					

In order to start making a protein from an mRNA strand, the strand must attach to a

______ in the cytoplasm. This occurs at the START codon (_____). The ribosome will move with energy provided by _____. In reality, the ribosome covers _____ codons and will move down the length of the mRNA strand as soon as an amino acid is added. This process is known as ______

AUG GGC UUA AAG CAG UGC UAG UU...

Where do the amino acids come from and how do they get to the ribosome?

Once the ribosome attaches, tRNA molecules can use the instructions on the mRNA to go and retrieve the proper ______. The ribosome will move along until it is instructed to ______ off. That will happen at one of three ______ codons. At this point the ribosome will drop off. The resulting amino acid chain will______ and form a functioning protein.

tRNA has an area for the ______to bind as well as an area to bond with the mRNA (anticodon)

CIRCLE a codon and SQUARE an anticodon.

What happens when the STOP codon is reached?

Now that the polypeptide chain is released from the ribosome, what must occur before the protein can function?

REVIEW

DNA BASE SEQUENCE \rightarrow AMINO ACID SEQUENCE \rightarrow PROTEIN SHAPE \rightarrow PROTEIN FUNCTION \rightarrow TRAIT

THE PEPTIDE BOND-DEHYDRATION SYNTHESIS

Amino acids all have the same basic structure. The only difference is the functional _____ group.

The ______ of one amino acid will form a bond with the ______ of a

different amino acid. This will release a ______ molecule in a process known as

Under normal conditions the CFTR sequence is shown with the amino acid phenylalanine.

An individual suffering from CF has a change at the ______ position, missing the Phe.

This change has a drastic effect on the protein. It does not function causing mucous to build up in and on the lungs. CFTR Sequence:

Nucleotide	ATC	ATC	ттт	GGT	GTT					
Amino Acid	lle I 506	lle Delete	Phe I 508 d in ∆F	Gly 508	Val I 510					
∆F508 CFTR Sequence:										
Nucleotide	ATC	ATT	GGT	GTT						
Amino Acid	lle	lle	Glv	Val						

506

Types of Mutations

Mutations can be classified as a	, an	or a
----------------------------------	------	------

_____. In each case there can be little to no effect or the effect can

be so severe that the protein does not function properly.

Deletion

Here one base is removed causing all of the remaining bases to shift. This is called a frame shift and the amino acid sequence will be so badly altered that the new protein will not fold correctly and not function.

Insertion

Here one base is added causing all of the remaining bases to shift. This is called a frame shift and the amino acid sequence will be so badly altered that the new protein will not fold correctly and not function.

Base Substitution-NEUTRAL

Here, one base is swapped with another base but the order of amino acids does not change. In this case, the protein function will be unaffected.

Base Substitution-MISSENSE

Here, one base is swapped with another base but the number of amino acids does change. In this case, the protein may not function properly or not al all.

Base Substitution-NONSENSE

Here, one base is swapped with another base and resulting codon is a STOP codon. In this case, the protein will be too short and not function at all.

EXAMPLE #3

DNA code	ТАС	G G C	АСТ	ТТТ	G A T	AAA	ΑΤΤ			
mRNA code										
Amino Acid										
Insertion	Deletio	n								
Substitution	NONSE	NSE	MISSEN	NSE	NEUTRAL					
Affected	T00 L0	ONG	TOO SH	IORT						
Not Affected										
EXAMPLE #4										
DNA code	ТАС	G G C	A C C	ТТА	G A T	AAA	A T T			
mRNA code										
Amino Acid										
Insertion	Deletio	n								
Substitution	NONSE	NSE	MISSEN	NSE	NEUTRAL					
Affected	T00 L0	ONG	TOO SH	TOO SHORT						
Not Affected										
EXAMPLE #5	5									
DNA code	ТАС	G G A	ССТ	T T G	A T A	AAA	ТТС			
mRNA code										
Amino Acid										
Insertion	Deletio	n								
Substitution	NONSE	NSE	MISSEN	NSE	NEUTRAL					
Affected	T00 L0	DNG	TOO SH	IORT						
Not Affected										

ТАС	G G C	A C C	ТТТ	G A T	AAA	ΑΤΤ
T A C	G G C	A C C	ТТТ	G A T	AAA	АТТ
T A C	G G C	A C C	ТТТ	G A T	AAA	АТТ
T A C	G G C	A C C	ТТТ	G A T	AAA	АТТ
T A C	G G C	A C C	ТТТ	G A T	AAA	АТТ
T A C	G G C	A C C	ТТТ	G A T	AAA	АТТ
T A C	G G C	A C C	ТТТ	G A T	AAA	АТТ
T A C	G G C	A C C	ТТТ	G A T	AAA	АТТ
T A C	G G C	A C C	ТТТ	G A T	AAA	АТТ
T A C	G G C	A C C	ТТТ	G A T	AAA	АТТ
T A C	G G C	A C C	ТТТ	G A T	AAA	АТТ
T A C	G G C	A C C	ТТТ	G A T	AAA	АТТ
T A C	G G C	A C C	ТТТ	G A T	AAA	АТТ
T A C	G G C	A C C	ТТТ	G A T	AAA	АТТ
T A C	G G C	A C C	ТТТ	G A T	AAA	АТТ
T A C	G G C	A C C	ТТТ	G A T	AAA	АТТ

Name_____

Use the Universal Genetic Code Chart to answer the questions below.

	Universal Genetic Code Chart Messenger RNA Codons and Amino Acids for Which They Code											
Г	Second base											
		U	С	A	G							
F⊢irst	U	UUU UUC UUA UUG LEU	UCU UCC UCA UCG	$\left. \begin{smallmatrix} UAU\\ UAC\\ UAA\\ UAG \end{smallmatrix} \right\} STOP$	UGU UGC UGA } STOP UGG } TRP	U C A G						
	с	CUU CUC CUA CUG CUA CCC CCA CCC CCA CCC CCA		$\left. \begin{smallmatrix} CAU \\ CAC \end{smallmatrix} \right\} \begin{array}{c} HIS \\ CAC \\ CAG \end{smallmatrix} \right\} \mathbf{GLN}$	CGU CGC CGA CGG	U C A G	T h i d					
b a s e	A	AUU AUC AUA AUG } MET or AUG } START	ACU ACC ACA ACG	$\left. \begin{smallmatrix} AAU \\ AAC \end{smallmatrix} \right\} \left. \begin{smallmatrix} ASN \\ ASN \\ AAG \end{smallmatrix} \right\} \left. \begin{smallmatrix} LYS \\ LYS \end{smallmatrix} \right.$	$\left. \begin{smallmatrix} AGU\\ AGC \end{smallmatrix} \right\}$ ser $\left. \begin{smallmatrix} AGA\\ AGA \end{smallmatrix} \right\}$ arg	U C A G	b a s e					
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	$\left. \begin{smallmatrix} GAU \\ GAC \end{smallmatrix} \right\} \begin{array}{c} ASP \\ GAC \\ GAG \end{smallmatrix} \left. \begin{smallmatrix} GLU \\ GLU \end{smallmatrix} \right.$	GGU GGC GGA GGG							

	DNA strand:	TAC	CGA	ССТ	тса
Species A	mRNA strand:	AUG	GCU	GGA	AGU
	Amino acid sequence:				
	DNA strand:	TAC	πτ	GCA	GGA
Species B	mRNA strand:				
	Amino acid sequence:	MET	LYS	ARG	PRO
	DNA strand:				
Species C	mRNA strand:	AUG	UUU	UGU	ccc
	Amino acid sequence:	MET	PHE	CYS	PRO
	DNA strand:	TAC	GTA	GTT	GCA
Species D	mRNA strand:	AUG	CAU	CAA	CGU
	Amino acid sequence:	MET	HIS	GLN	ARG
	DNA strand:	TAC	πс	GCG	GGT
Species E	mRNA strand:	AUG	AAG	CGC	CCA
	Amino acid sequence	MET	LYS	ARG	PRO

According to the information, which two species are most closely related. Support your answer.

Species _____ and _____

Because _____

Name	Protein Synthesis

Use the mRNA strand to correctly synthesis a protein. Below each codon, write the amino acid **(bolded)** it codes for and the corresponding letter or word to complete a sentence. Carefully note what happens if the base sequence is altered. These alterations can cause mutations in the protein.

BASE SUBSTITUTION: The original base is replaced by one of the other three bases. This may or may not lead to an amino acid substitution/mutation. If there is no affect, it is called a NEUTRAL SUBSTITUTION.

BASE DELETION: A base is missing. This can result in a shift in the reading frame (also known as a frameshift mutation). If the normal protein code is

THE FAT CAT ATE THE BIG RAT, the protein code resulting from deleting the E in THE would be THF ATC ATA TET HEB IGR AT. This mutation could affect the end protein, possibly making it nonfunctional.

BASE INSERTION: An extra base has been added. This can result in a shift in the reading frame (frameshift mutation). If the normal protein code is

THE FAT CAT ATE THE BIG RAT, the protein code resulting from insertion of an extra initial E would be THE EFA TCA TAT ETH EBI GRA T. This mutation could affect the end protein, possibly making it nonfunctional.

NONSENSE MUTATION: If a codon is changed to a "STOP" codon (UAA, UAG, or UGA) translation of mRNA would be prematurely terminated. These are called nonsense mutations because the protein is nonfunctional.

			Secon	d base			
		U	С	A	G		
	U	UUU UUC UUA UUG LEU	UCU UCC UCA UCG	$\left. \begin{smallmatrix} UAU\\ UAC\\ UAA\\ UAG \end{smallmatrix} \right\} STOP$	UGU UGC CYS UGA STOP UGG TRP		
F r s t	с	CUU CUC CUA CUG	CCU CCC CCA CCG	$\left. \begin{smallmatrix} CAU \\ CAC \end{smallmatrix} \right\} HIS \\ \left. \begin{smallmatrix} CAC \\ CAG \end{smallmatrix} \right\} GLN$	CGU CGC CGA CGG	U C A G	T h r d
b a s e	A	AUU AUC AUA AUG } MET or AUG } START	ACU ACC ACA ACG	$\left. \begin{smallmatrix} AAU \\ AAC \end{smallmatrix} \right\} \left. \begin{smallmatrix} ASN \\ AAC \\ AAG \end{smallmatrix} \right\} \left. \begin{smallmatrix} LYS \\ LYS \end{smallmatrix} \right.$	$\left. \begin{smallmatrix} AGU \\ AGC \end{smallmatrix} \right\} \; \begin{array}{c} SER \\ AGC \\ AGG \\ AGG \end{smallmatrix} \left. \begin{smallmatrix} ARG \\ ARG \end{smallmatrix} \right\} \; \begin{array}{c} ARG \\ ARG \end{array}$	UCAG	b a s e
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	$\left. \begin{smallmatrix} GAU\\ GAC \end{smallmatrix} \right\} \textbf{ASP} \\ \left. \begin{smallmatrix} GAA \\ GAG \end{smallmatrix} \right\} \textbf{GLU}$		U C A G	

Universal Genetic Code Chart Messenger RNA Codons and Amino Acids for Which They Code

Below are amino acids in the cytoplasm.

HIS	TYR	PRO		LYS				
Ι	AROUND	THIS	T	TODAY				
	ASN	MET	ARG		SER			
LOVE		51AK1	UP		LIKE			
G	LY	ILE	ALA	LEU				
CC	ORN	MEET	CLASS	CLASS DOWN				

Below is a functioning mRNA. Determine the amino acid sequence which could form a sentence.

A U G C A C A A U C C G G C C U A A A

The next four sequences have been mutated in some way. Determine the amino acid sequence/sentence and record which mutation occurred. Circle the end result of the mutation.

A	U	G	C	A	C	A	A	U	С	C	G	G	С	С	U	A	A	Α	
A	U	G	С	A	С	A	А	U	С	С	G	G	С	С	U	A	G	A	
		_				_						-							
		-			_			_			-				-				
Mu	tatio	n: E	Base	Subs	tituti	ion	Neu	itral S	Subst	tituti	on	Ins	ertio	n	Dele	tion	N	onsen	se
Res	ult:	No	ne	A	ffect	ed	No	onfun	ctior	nal									

A	U	G	C	A	C	A	A	U	С	С	G	G	C	С	U	A	A	Α
A	U	G	С	A	С	A	G	U	С	С	G	G	С	С	U	А	A	A
												_						
						_						-						
Mutation: Base Substitution						Neutral Substitution					Insertion			Deletion		Nonsense		
Re	sult:	No	one	А	ffect	ed	No	onfur	nctio	nal								
A	U	G	C	A	C	A	A	U	C	C	G	G	C	C	U	A	A	Α
A	U	G	С	A	С	A	A	U	С	С	G	G	С	U	А	A	A	
								-			_	_						
								-			-	_			-			
Mu	tatio	on: I	Base	Subs	titut	ion	Neu	ıtral	Subs	titut	ion	Ins	ertio	n	Dele	tion	N	onsense
Re	sult:	No	one	А	ffect	ed	No	onfur	nctio	nal								

A U G C A C A A U C C G G C C U A A A A U G C A C A A A U C C G G C С U A A A **Mutation:** Base Substitution Neutral Substitution Deletion Insertion Nonsense **Result:** None Affected Nonfunctional C A C A A U C C G G C C U Α U G Α Α A C A C U A G C C G C C U G G U А IJ Α Α Mutation: Base Substitution Neutral Substitution Insertion Deletion Nonsense **Result:** None Affected Nonfunctional

Which mutation seems to have the most affect on the function of a protein? Explain your answer.

Describe what happens if no STOP codon is present.

Describe what happens if a STOP codon is in the wrong place (too close to the beginning of the protein).